Math 203 Spring 2013-Exam 3
Instructor: Shapiro

Work carefully and neatly and remember that I cannot grade what I cannot read. You must show all relevant work in the appropriate space. You may receive no credit for a correct answer if there is insufficient supporting work. Notes, books and graphing or programable calculators are NOT ALLOWED.
[18pt] 1. Fill in the blanks with A (lways), S (ometimes), N (ever) so that the following are correct statements.
(a) If $\operatorname{dim} V=n$ and if S is a linearly independent subset of V with n vectors, then S
\qquad spans V.
(b) If A is a 4×7 matrix, then the dimension of $\operatorname{Nul} A$ is \qquad S equal to three.
(c) The vector $3 \mathbf{u}+2 \mathbf{v}$ is \qquad in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
(d) If A is a non-invertible square matrix, then the columns of A are \qquad N linearly independent.
(e) If A is invertible, then $\operatorname{Nul} A$ \qquad A consists of only the zero vector.
(f) If $\operatorname{dim} V=6$ and if S is a subset of V with 7 vectors, then S \qquad spans V.
[8pts] 2. Let $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x y \geq 0\right\}$.
Show that H is not a subspace of R^{2}.

$$
\text { Lat } u=\binom{1}{2} \text { and } V=\binom{-2}{0}
$$

Then both u and v are in H.

$$
\text { However, } u+v=\binom{-1}{2} \text { is not in } H
$$

3. $A=\left[\begin{array}{rrrrr}\boldsymbol{V}_{\mathbf{1}} & \boldsymbol{V}_{\mathbf{2}} & \boldsymbol{V}_{\mathbf{3}} & \boldsymbol{V}_{\mathbf{4}} & \boldsymbol{V}_{\mathbf{5}} \\ 24 & -12 & 12 & -72 & 96 \\ 5 & -10 & -20 & 15 & -10 \\ -49 & 56 & 70 & 21 & -70 \\ 4 & -5 & -7 & 0 & 4\end{array}\right]$ and $B=\left[\begin{array}{rrrrr}1 & 0 & 6 & -5 & 6 \\ 0 & 1 & 3 & -4 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ are row equivalent.
[9pt]
(a) What is the dimension of: (i) nut A \qquad (ii) $\operatorname{col} A$ \qquad (iii) row A ?
[1 2pt]
(b) Give a basis for each of (i) nus A; (ii) $\operatorname{col} A$; (iii) row A.

$$
\left.\begin{array}{l}
x_{1}-6 x_{3}+5 x_{1}-6 x_{5} \\
x_{2}=-3 x_{3}+4 x_{4}-4 x_{5}
\end{array}\right\} \text { variables } 0 \text {. }
$$

(i) $\left\{v_{1}, v_{2}\right\}$
iii)
(106-56)
(013-44)
[5pt] (c) Write the fourth column of A as a linear combination of the first three columns, or explain why that cannot be done. (Hint: This is quick)
Look at B
column $4=00-5$ col $1-4$ col 3
Hence $\quad V_{4}=-5 V_{1}-4 V_{2} \quad$ or $\quad V_{4}=V-V_{2}-V_{3}$
[16pt] 4. Let $\mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ be bases for a vector space V and suppose that $\mathbf{a}_{1}=2 \mathbf{b}_{1}+2 \mathbf{b}_{2}$, and $\mathbf{a}_{2}=\mathbf{b}_{1}+2 \mathbf{b}_{2}$.
(a) Find the change-of-coordinate matrix from \mathcal{B} to \mathcal{A}.
(b) Find $[x]_{\mathcal{A}}$ for $\mathbf{x}=3 b_{1}-1 b_{2}$

$$
\begin{aligned}
& \text { (b) Find }[\mathrm{x}]_{A} \text { for } \mathrm{x}=3 \mathrm{~b}_{1}-1 \mathrm{~b}_{2} \\
& \frac{1}{2}\left(\begin{array}{cc}
2 & -1 \\
-2 & 2
\end{array}\right)\binom{3}{-1}=\frac{1}{2}\binom{7}{-8}=\binom{7 / 2}{-4}
\end{aligned}
$$

5. Let $\mathbf{B}=\left\{1+3 t+t^{2}, t+2 t^{2}, 1+3 t+t^{2},-1+t\right\}$.
[8pt]
(a) Show that \mathbf{B} spans \mathbb{P}_{2}.

$$
\begin{aligned}
& { }^{-1}\left[{ }^{-3}\left[\left(\begin{array}{lllc}
1 & 1 & 1 & -1 \\
3 & 0 & 3 & 1 \\
1 & 2 & 1 & 0
\end{array}\right) \leadsto\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
0 & -3 & 0 & 4 \\
0 & 1 & 0 & 1
\end{array}\right)\right]^{1 / 3} \leadsto\left(\begin{array}{cccc}
1 & 1 & 1 & -1 \\
0 & -3 & 0 & 4 \\
0 & 0 & 0 & 7 / 3
\end{array}\right)\right. \\
& \text { There in a }
\end{aligned}
$$ pivot in each row!

so column span
[8pt] (b) Find a subset of \mathbf{B} that is a basis of \mathbb{P}_{2}.
The vectors corresponding tu
columns 1,2 and 4 span and so are abasis. They are

$$
-\left\{1+3 t+t^{2}, \quad t+2 t^{2}, 4-1+t\right\}
$$

[16pt] 6. Suppose that in a small town 40% of the people walk to work, while the rest drive to work. Suppose that each year the proportion of people that either walk or drive to work changes according to the stochastic matrix

Walk Drive
Walk $\left(\begin{array}{cc}.85 & .2 \\ .15 & .8\end{array}\right)$.
(a) Next year what percentage of the town will walk to work?

$$
\begin{aligned}
&\left(\begin{array}{cc}
.85 & .2 \\
.15 & .8
\end{array}\right)\binom{.4}{.6}=\binom{.34+.12}{.06+.48} \\
&=\binom{.46}{.54} \\
& 46 \% \text { will walk next yean }
\end{aligned}
$$

(b) In the long run, what percentage of the people will walk to work?

$$
\begin{aligned}
& \left(\begin{array}{cc}
.85 & .2 \\
.15 & .8
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
-.15 & .2 \\
.15 & -.2
\end{array}\right) \rightarrow\left(\begin{array}{rr}
-15 & 20 \\
15 & -20
\end{array}\right) \\
& \left(\begin{array}{cc}
-15 & 20 \\
0 & 0
\end{array}\right) \text { ar } \begin{array}{r}
15 x_{1}=20 x_{2} \\
\text { set } x_{1}=1
\end{array} \\
& \text { Thus } 4 y_{7} \text { will } \\
& \text { walk }
\end{aligned}
$$

